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The purpose of this paper is to improve the explanation, given by Woodhead-Galloway & Machin [Acta 
Cryst. (1976), A32, 368-372] for the marked diffuse near-equatorial X-ray scattering seen in the diffraction 
patterns of rat-tail tendon and other collagens. That paper suggested a lateral liquid-like disorder among the 
molecules, but the treatment involved a number of simplifications, the most important being its restriction to 
an equatorial projection. This paper elaborates on the treatment and provides two different versions each dealing 
with the problem in three dimensions. The first approach derives the crystallographic consequences of the 
random-stagger model for the fibril proposed by Grant, Cox &Horne [Nature (London), (1965), 207, 822- 
8261. The second approach relaxes the strict crystallography assumed in the treatment of the model of Grant 
et al. (1965); instead it suggests a stochastic analogy with the theory of Woodhead-Galloway [Acta Cryst. 
(1977), B33, 1212-1218] for the off-equatorial reflections seen in the diffraction pattern of rat-tail tendon.An 
addition, the opportunity is taken to remove a discrepancy between theory and experimental results by intro- 
ducing the fanning of the diffraction pattern (which has its origins in molecular tilting or in fibril shearing). 

1. Introduction 

It is worth beginning by rehearsing briefly the theory of 
the collagen fibril advanced by Hodge & Petruska 
(1963): they demonstrated that the 67 nm (=D) axial 
period of the fibril was a consequence of any two 
molecules in the fibril being related axially by an 
integral multiple of this distance (Fig. la). The 
molecular length (L) is close to 300 nm, i.e. about 
4.5D, and it follows that in axial projection the period 
consists of two distinct regions containing molecular 
segments in the ratio of 5 (overlap) to 4 (gap) (Fig. lb). 
Any more detailed model of the arrangement of 
molecules in the fibril is subject to that constraint. 

The low and medium-angle X-ray diffraction pattern 
obtained from rat-tail tendon includes relatively sharp 
Bragg reflections together with a marked continuous 
diffuse scatter close to the equator (Miller & Wray,  
1971). These two features indicate the presence of long- 
range order and considerable disorder in the dispo- 
sition of the molecules; deterministic and probabilistic 
aspects of the structure respectively. 

The origins of the diffuse scatter have been suggested 
recently to lie in an irregular liquid-like lateral packing 
of single molecules (Woodhead-Galloway & Machin, 
1976a,b). However, a priori the fibril might be expected 
to suffer two further sorts of disorder: first, irregular 
'tilting' of the molecules resulting in the near-equatorial 
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diffuse scatter (and that, for example, on the 0-9 nm 
layer line) being fanned. Shearing of the fibrils would 
produce a more or less identical effect near the equator 
(Tomlin & Ericson, 1960). § 2 of the present paper 
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Fig. 1. Schematic arrangements of molecules in the collagen fibril 
used as bases for the calculations of this paper. (a) A random 
distribution of discrete gaps (see text of § 3). If the five different 
axial relations among molecular strands are present with equal 
frequency, then in axial projection the fibril has a strict D 
periodicity. (b) Molecular segments in both the gap and overlap 
regions fill the available volume uniformly. In the model of 
Woodhead-Galloway (1977), the segments occupy lattice points 
in the two regions. In the approach described in § 5, the space 
is filled isotropically and irregularly. (Tilting of the molecules 
has been neglected in the diagrams.) 
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shows the consequences for the distribution of diffuse 
intensity of combining such a tilting with the theory of 
Woodhead-GaUoway & Machin (1976a,b). 

A less trivial sort of disorder is one involving the 
axial relations among the molecules. Grant, Cox & 
Horne (1965) drew attention to the possibility that the 
set of relations is distributed randomly (Fig. la). Some 
possible (circumstantial) evidence for this view was 
obtained from an analysis of the amino-acid sequence 
of collagen by Hulmes, Miller, Parry, Piez & 
Woodhead-Galloway (1973). Conceptually (and tech- 
nically), a random-stagger model is the simplest one 
possible which may be combined readily with a lateral 
disorder. More realistic models probably involve near- 
randomness in the relations, but a discussion of the 
crystallographic consequences is beyond the scope of 
the paper, although the formalism developed in § 3 to 
deal with a random model is quite general enough to 
provide a rigorous framework for the calculations. 

2. Effect of  irregular molecular tilting on the 
equatorial diffuse scattering 

Woodhead-Galloway & Machin (1976a,b) simplified 
considerably the problem of the structure of the fibril 
in proposing a model for the origins of the near- 
equatorial diffuse scatter. The fanning of the pattern 
was not considered; molecules were treated as uniform 
straight cylinders parallel to the fibril axis. The treat- 
ment was also limited to that of a projection on the 
equator - the molecules further approximated by 
uniform discs and the lateral packing of the molecules 
by a gas of hard discs. An acceptable account of the 
diffuse intensity was achieved although there were 
important discrepancies, notably at very small angles. 

With no tilting, the intensity, I(k'), is confined 
strictly to the equator and is accounted for, theoreti- 
cally, by the expression 

/(k ')  ~ S(k ') fE(k ') (2.1) 

where f ( k ' )  is the transform of the molecule in pro- 
jection and S(k')  is the interference function for an 
irregular, liquid-like packing of molecules [k' = (kx 2 + 
k~] v2. Woodhead-Galloway & Machin (1976a,b) have 
shown how S (k') may be calculated for a simple model 
where the only two parameters defining the function are 
the molecular radius, R, and the packing fraction, r / =  
nonR 2 (no is the number density of molecules in 
equatorial projection). 

If, however, rather than straight and parallel to the 
axis, the molecules suffer a degree of random tilting up 
to a maximum small angle of + ~Pmax from the axis, then 
each point defined by k' on the equator spreads into an 
arc of length 2k'CPmax and the relative intensity of an 
equatorial tracing becomes 

Io(k') oc S(k ' ) fE(k ' )k  '- '  (2.2) 
r e l a t i v e  

Fig. 2 shows a comparison between an experimental 
equatorial intensity trace from wet rat-tail tendon and a 
curve calculated through (2.2), S(k') being obtained by 
the method referred to above, where (originally) values 
of 2R = 1.18 nm and r / =  0-608 gave the best fit with 
experiment. The value of 2R is not appreciably altered 
by the modification of (2.2) but a good fit with experi- 
ment seems to demand a slight increase in r/to 0.648.* 

Fig. 3(a) shows experimental intensity curves ob- 
tained from diffraction patterns of elastoidin (see also 
Woodhead-Galloway & Knight, 1977), together with 
Fig. 3(b) showing theoretical curves for comparison. 

The closeness of the fit between theory and experi- 
ment is, to some extent, fortuitous, given the number of 
approximations made in the service of expediency. Con- 
ceptually, three of these are of little significance, viz 
approximating the molecule in projection by a simple 
uniform disc, employing the hard-disc gas approach to 

*The series solution for S(k') developed by Woodhead- 
Galloway & Machin (1976a,b) had to be extended to ensure good 
convergence at the higher density and two further terms were 
calculated in the direct correlation function C(k')related to S(k') 
by S(k') = [1 - C(k')] -1, bringing the total to ten. 
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Fig. 2. Equatorial densitometer traces for wet rat-tail tendon. 
Experimental curve.  Theoretical curve of relative 

intensity from (2.2) fitted to the experimental curve by varying R 
and r/. It is worth speculating that the sort of explanation 
offered here might also be offered for the origins of similar 
scattering in the diffraction pattern of the silk of Apis melifera 
(Atkins, 1967). e-o-e-e  Theoretical curve of relative intensity 
from (2.2) with (3.15), (3.16) and (2.1). The intensity includes, 
therefore, contributions from layer lines close to the true equator. 
The value of 2R = 1.18 nm and that of q = 0.648 are used for 
both theoretical curves. For a possible explanation of the 
discrete reflections superposed on the continuous trace, and 
which account for a large part of the diffracted intensity from 
rat-tail tendon, see, for example, Woodhead-Galloway (1977). 
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calculate S(k')  and adopting the trivially simple treat- 
ment of the equatorial fanning. All are susceptible to 
refinement without adding much to our understanding 
of the problem. This is not true of the other major 
simplification, however - limiting the treatment to an 
equatorial projection. 

Fig. l(a) and l(b) represent schematically the two 
(possible?) sorts of three-dimensional molecular ar- 
rangement treated in the present paper. It has already 
been pointed out that the feature common to all 
possible models is the ratio of 5 :4  between the number 
of molecular segments in the 'overlap' and 'gap' regions 
respectively. Thus, different models are better distin- 
guished by the distribution of space - the missing 
molecular segment. In the former, the space is in 
discrete units - gaps in otherwise continuous molecular 
strands. 

In Fig. l (b) the space is distributed more evenly - the 
molecular strands occupy the available volume in gap 
and overlap regions uniformly. 

3. Effect of random staggers on the diffraction pattern 

It is clear that, in general, for models (involving straight 
molecules) like that of Fig. 1 (a) intensity in the diffrac- 
tion pattern is confined to layer lines (l) spaced by 
(50)-1; for truly crystalline models intensity is also 

confined to row lines (h,k). If, rather than possessing 
long-range lateral order, the side to side packing is 
irregular, then clearly such row lines are not present but 
the intensity is distributed continuously on each layer 
line (?). 

The model of Woodhead-Galloway & Machin 
(1976a,b) neglected intensity on layer lines other than 
l = 0, the true equator; equivalently they ignored the 
presence of gaps altogether. This section develops a 
formalism to describe the off-equatorial intensity and 
explicitly calculates it for gaps which are distributed 
at random. 

Details of molecular structure will not seriously 
affect intensities very close to the equator, so if atten- 
tion is limited to the first few layer lines, a simple 
cylinder model for the molecule may well be adequate, 
the Fourier transform of which is 

J l (k 'R)  
f ( k ' ,  k~) ~ 2~rR • 2 sin 

k' 

(k' -.O, kz-,O) (3.0) 

where the length of the molecule, L, is known to be 
approximately 4.5D. The first factor is independent of 
the layer-line order; Table 1 shows the square of the 
second factor to illustrate how intensity varies with 
L following the appropriate substitution k z = 12n/5D. 
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Fig. 3. (a) Experimental equatorial intensity traces obtained from X-ray diffraction patterns of dog-fish fin elastoidin: (1) as reported by 
Woodhead-Galloway & Knight (1977): (2) curves of this sort are also obtained sometimes (see, for example, Wray, 1972). The two 
curves represent different states of hydration of the material which in its natural state contains a good deal of water. (b) Theoretical 
curves calculated as for Fig. 2 but with lower values of the packing fraction, r/: (1) q = 0.452, (2) r/= 0.550. 2R = 1.2 rim. 
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It is clear from Table 1 that, other things being 
equal, intensity near the equator is dominated by the 
contribution from l -- 0 suggesting that neglect of other 
intensity is not likely to lead to serious error, the total 
intensity contributed by the first four layer lines 
amounting to only 10% of that on the equator. What 
follows, however, indicates that for the simple model 
used in § 2 the fit between theory and the experimental 
results is somewhat fortuitous. 

Table 1. F(kz) = 4[sin(k~L/2)/kz] 2 calculated for  the 
first f ew  layer lines (l) for  two values o f  the molecular 

length L. k z = 2zd/5D 

l L = 4 .4D L = 4 .5D 

0 1.000 1.000 
+1 0.018 0.012 
+2 0.015 0.011 
+3 0.012 0.009 

: +4 0.008 0.007 
+5 0.005 0.005 

, +6 ~0.003 ~0,003 

components we define a set of partial structure factors 
S ~ ( k  x) where 

C,~ C~N(S~(kx)  - 1) 

=~ nan~ explikxa(n - n~)l ) . (3.2) 

\ a p p r o p r i a t e  n 

In terms of such partial structure factors, an expression 
for the interference function I Q(kx)l 2 may be written: 

IQ(kx)l 2 = N[IVI 2 - I VI 2 + C~]I Vol2Soo 
+ C121V 112811 + . . . C ] I  V412 844 

+ CoC,(V*oV, + V*Vo)So, 
+ all other similar cross terms], (3.3) 

where 

[1" = ~[ 1 + exp(2zdl/5) + exp(4zcil/5) + exp(6z6l/5) 
+ exp(8nil/5)]. (3.4) 

Thus 

IF = 1 if I is a multiple of five 1 (3.5) 
-- 0 if l is not a multiple of five J 

A theory has been given recently in a quite different and 
context which may be modified to treat the problem 
in hand (Leung, Stott & Young, 1976), and that paper 
should be consulted for any details of the underlying 
theory which are not obvious from the treatment given 
here. The formalism of the problem will be presented 
in a quite general way, although the explicit solution 
given is that for the problem of random staggers where, 
laterally, we shall presume that the molecules are 
actually on the points of an underlying one-dimensional 
lattice; this latter restriction may be readily relaxed (see 
§ 5). The structure of the fibril will be formally defined 
to consist of molecular strands of period 5D related to 
one another by random axial translations (Fig. la). It is 
therefore clear that intensity will be confined to layer 
lines (1) spaced by 1/5D. The problem is to discover 
the intensity distribution on such layer lines. Formally, 
we treat this as a five-component system [corres- 
ponding to the five distinguishable axial translations; 
the treatment of Leung et aL (1976) was for a two- 
component system]. We further presume that there is a 
total of N strands where N is a multiple of five to 
comply with the requirement of strict periodicity so that 
there are N/5 of each translation, and we may define 
for parallelism with other treatments a concentration 
C,, of each component, suitably normalized so that 
C,~ = 1/5 and a = 0, 1, 2, 3, 4. We notice that in this 
treatment, the contribution to the diffracted amplitude 
from all molecular strands having the same axial Thus 
relation contains the explicit phase factor 

V,~ = exp(2n/al/5). (3.1) 

For the contribution to the interference function 
IQ(kx)l 2 from the distributions of the five different 

[ V] 2 = 1 ( 1  + 1 + 1 + 1 + 1) = 1, independent of 1. (3.6) 

Thus, as always in problems involving short-range 
order, calculation centres on the explicit evaluation of 
the S~(kx) .  In the context of collagen one such evalu- 
ation has been suggested in an attempt to discuss the 
lateral irregularity (Woodhead-Galloway & Machin 
1976a,b) and here we now present a further one. By 
analogy with Leung et al. (1976) we define 

1 
~_~ exp(inakx) (3.7) 

n 

where the summation is over all sites of the underlying 
lattice, and for the case of complete randomness, this 
may be shown to be related to S~(kx)  by 

S~(kx)  = Nl~(kx)l 2. (3.8) 

From (3.7) 

~(kx) = 0 if k x :~ a reciprocal-lattice vector' 
of the underlying lattice 

~(kx) = 1 if k x is such a vector, i.e. if (3.9) 
2n? 

k x = - -  where y is any integer. 
a 

S~(kx)  Sao(kx) == N 0 if if vector kx kx =is not 2ny a. reciprocal-lattice } 

a 

(3.10) 
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These results may now be substituted into the 
expression for the interference function which we may 
write more concisely as 

, Q ( k x ) I 2 = N ~ I V , 2 _  ,g ,  2 + ~.~ C , , C / ~ V V . S , f ~ ( k x ) )  

(3.11) 
and 

2roy } 
C,, C~ V~ V*~ S,,~(kx) = 0 if kx:/: - -  

,,/3 a 2ny (3.12) 
= NI F'I 2 i f k  x = ~ .  

a 
Thus 

- 2roy } 
IQ(kx)l z = N[1 -- IVI2I if k x ~ 

a (3.13) 
- -NII - - IVI  2+NIVI  2]ilk x 2zr? 

a 

Recalling the results of (3.5) and combining them 
with those of (3.13) yields immediately the final results 
of this analysis" 

l 1 1 ¢ 5 m  
= 5m 

N 2 0 kx = 2zry 

iQ(kx)12 = a (3.14) 
2z0, c o n f i g u r a t i o n a l  a v e r a g e  

0 N kx :¢: 
a 

Fig. 4(b) sums up these findings to compare with the 
expected diffraction pattern from the Hodge-Petruska 
model. It could, of course, have been shown in a simpler 
way that the intensity for l = 5m and k x = 2ny/a is 
invariant under different stagger models. 

We have discussed in detail the case of the one- 
dimensional lateral geometry, this being more con- 
venient to demonstrate. But the formalism generalizes 
readily. For the two-dimensional lateral case, the 
general result (equation 3.3) still stands except now the 
S ~  are the appropriate two-dimensional structure 
factors and it is to be understood that k x is replaced by 
(k x, ky). In the special isotropic case when the structure 

]¢.2)1/2 the work links up factors depend only on (k~ + ..y, , 
directly with that of Woodhead-Galloway & Machin 
(1976a,b) who interpreted this function via a two- 
dimensional theory of classical liquids. 

An answer to a theoretical model which includes 
random axial staggers and liquid-like lateral relations 
follows directly. The substitutional model of Faber 
(1972) will be valid, and all the S,~ of (3.2) will be the 
same [S(k'), say]. Equation (3.2) then becomes 

IQ(k ' ) I 2=N[ IVI  ~ -  IlFI 2 + 1lTI2S(k')l (3.15) 

or explicitly, since (3.5) and (3.6) still apply, 

I Q(k')l 2 = N S (k ' )  if / is  a multiple of five, (3.16) 
= N otherwise. 

It is worth observing that Faber's (1972) results are 
sometimes used in liquid-metal theory, but we believe 
that the present application is a priori more valid and 
realistic. 

4. Comparison with experiment 

A C6mbination of the considerations leading to 
equations (2.2) and (3.16) suggests that roughly 
speaking, contributions to the diffracted intensity 
arising from layer lines (l), I t, are given by 

I t ~ N S (k')f2(k'l ,  kz) k ' -z  if l is a multiple of five (4. 1) I t N f f ( k ' ,  kz) k ' - l  otherwise f 
where f ( k '  l, k z) is given approximately by (3.0)and k ' =  
(k2x + k~) 1/2 and k s = 2nl/5D. 

Because 5D is very large (>330 nm), layer lines 
are closely spaced, and there is considerable overlap 
of intensity among them. Thus, the resultant intensity 
on the true equator is given by 

/resultant = Io + ~. (I+t + I-t). (4.2) 
r e l e v a n t  I 

The meaning of 'relevant l' over which the sum- 
mation is to be taken is vague; no attempt will be 
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Fig. 4. The effect of randomizing axial relations on the theoretical 
X-ray diffraction interference function: (a) pattern predicted by 
regular Hodge & Petruska (1963) scheme, (b) diagram showing 
relations (3.14), discrete reflections and continuous intensity. 
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made to treat this part of the problem rigorously. 
Table 1 shows that intensity if falling off rapidly with 
increasing Ill and a summation over the first four layer 
lines estimates the effect qualitatively. Fig. 2 shows 
(4.2) calculated with these layer lines and S(k') calcu- 
lated for r /=  0.648 as already shown in the figure. 

Theory seriously overestimates the low-angle scat- 
tering and the comparison with experiment seems to 
rule out a random-stagger model as formulated here. 

5. A less formally crystallographic approach 

The failure of the random-stagger model to recover the 
experimental details adequately may imply that there is 
a greater degree of correlation in axial relations and the 
defining and solving of such models is not uninteresting. 
We shall, however, rather than pursuing that line, 
attempt a rather different approach suggested by 
Woodhead-Galloway (1977) in  an attempt to account 
for the strong off-equatorial Bragg reflections in the 
diffraction pattern of rat-tail tendon. The essential idea 
is illustrated in Fig. 1 (b). In the gap and overlap regions 
the space is occupied uniformly by the available 
molecular strands; in the crystalline model of 
Woodhead-Galloway (1977) the strands occupy lattice 
points; here it might be suggested that the arrangement 
in the gap and overlap region is liquid-like. The model 
introduced by Woodhead-Galloway & Machin 
(1976a,b) is particularly useful in testing this hypoth- 
esis in that  the structure depends only on the packing 
fraction, r/, and the overlap and gap regions have 
structures which depend on packing fractions in the 
ratio 5:4.  It seems very probable that a model of this 
latter kind is appropriate for the structure of the 
needles of elastoidin (Woodhead-Galloway & Knight, 
1977; Woodhead-Galloway,  Hukins, Knight, Machin 
& Weiss, 1978). 

The data collected for rat-tail tendon, however, 
support a model which is more of a compromise 
between the theory of Woodhead-Galloway (1977) and 
the one just outlined. There are a number of reasons for 
thinking that this might be the case, none of them very 
strong, but, taken together, suggestive. First, there is 
the question of how the short-range order may be 
reconciled with the relatively sharp Bragg reflections 
which indicate that the crystalline region may be as 
large as 100-150 nm across. Second, the theoretical 
curve for the diffuse scatter (Fig. 2) based on an 
equatorial projection recovers the experimental curve 
very well - slightly better than the curves calculated for 
elastoidin. Third, the strong off-equatorial Bragg 
reflections fall at the edge of the 'fan' of diffuse scatter. 
What  these points suggest is that the lateral disorder 
is largely confined to the gap region where the density is 
low and where the molecular segments are tilted 
irregularly. 

Thus the diffuse intensity would be given by 

I(k') ~ f ( k ' )  2 S(k')k '-l, (5.1) 
gap 

on the equator. However, it has already been shown 
(Fig. 2) that an expression of this sort does fit the 
experimental density trace and, furthermore, that the 
value of r/ which allows a good fit is close to 0.65. 
This is an interesting value; as we have seen, a simple 
regular cyclinder model seems to give quite a good basis 
for intensity calculation. The packing fraction for a 
tetragonal array of regular cylinders is n/4. Then, if, as 
conjectured by Woodhead-Galloway (1977), this is the 
molecular arrangement in the overlap region, the corres- 
ponding packing fraction in the gap is n/5 = 0.628 - 
differing from the value estimated from the diffuse 
scatter by only 3% - adding more weight to the idea 
of gap regions in which the arrangement of molecules is 
less regular than in the overlap regions. 

The gap and overlap regions are less clearly differen- 
tiated in elastoidin (Woodhead-Galloway & Knight, 
1977), probably by virtue of the material 's low density. 
Tilting in the gap and overlap regions may well be more 
similar, and the observed intensity contributed roughly 
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Fig. 5. Comparison of strict crystallographic model of § 3 
( - - - )  with the suggestion of § 5 ( . . . . . .  ) and curve (1) of Fig. 
3(a) ( ). Packing fraction used in the calculation of § 3 and 
for overlap calculation was 0.51 (consequently that for gap- 
region calculation = 0.8 x 0.51 = 0.41). In the calculation of 
§ 5, the gap region was presumed to be 0.6D and the overlap 
region, 0.4D. The degree of tilting in gap and overlap was 
presumed to be the same. The problem of layer lines with 
different intensity distributions met in § 3 is not met here since 
intensity arises only from layer lines ! = multiples of five and is 
the same function of k' on all (at least to a first approximation). 
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equally by the gap and overlap regions. Fig. 5 shows 
intensity calculated for the two models of § § 3 and 5 
and compared with the experimental intensity for 
elastoidin. The comparison is intended to be illustrative 
only, although a reasonable fit between theory and ex- 
periment has been attained for the latter model for a 
value of the molecular diameter of 1.2 nm and a value 
of packing fraction in the overlap region of r / =  0.51. 
The degree of tilting in the gap and overlap regions is 
presumed to be the same so that the intensity is given 
by 

I ( k ' ) ~ i [ x S ( k ' ) + ( 1 - x ) S ( k ' ) ] f ( k ' ) 2 k  '-~ (5.2) 
k gap overlapJ 

where x is the fraction of the D period occupied by the 
gap region, known to be about 0.6. The intensity calcu- 
lated for the model of § 3 is based on the same packing 
fraction, 0.51, and includes contributions from the 
same layer lines as the calculation done for rat-tail 
tendon. It appears that the random-stagger model is the 
inferior of the two. 

6. Discussion and conclusions 

(i) On the whole, the paper supports the contention of 
Woodhead-GaUoway & Machin (1976a,b) that the 
chief reason for diffuse near-equatorial intensity is a 
two-dimensional liquid-like irregularity in the dispo- 
sition of single molecules. 

This explanation is, of course, very much at variance 
with that of, say, Miller & Wray (1971) and Miller & 
Parry (1973), who considered the intensity profile to be 
that of a five-stranded microfibril (Smith, 1968). In this 
they followed an earlier argument of Atkins (1967), 
who felt that the (similar) intensity distribution in the 
diffraction pattern of the silk ofApis melifera suggested 
a four-stranded coiled coil. It seems that a combination 
of lateral irregularity with some disorderly tilting or 
shearing offers an adequate explanation for the diffuse 
intensity (of both materials). 

(ii) The calculations reported here are not sufficiently 
refined for this conclusion to be drawn without reser- 
vation, but sufficient agreement with experiment has 
been demonstrated for them to be regarded seriously. 

(iii) Of the two models explored in the paper, the 
second where the available space is filled uniformly by 
the molecular segments is clearly favoured by the 
available data. It is important that a model can be 

found relatively easily which complements that sug- 
gested by Woodhead-Galloway (1977) for the Bragg 
reflections seen in the pattern given by rat-tail tendon. 

(iv) It is disappointing that the question of detailed 
axial relations among the molecules cannot be answered 
by an appeal to X-ray data if the conclusions of the 
paper are correct. 

J. Woodhead-Galloway is most grateful for the 
Guinness Research Fellowship at New College, Oxford, 
and the Sir Henry Royce Fellowship awarded by the 
Rheumatology Department in the University of 
Manchester. Thanks are also due to Miss Pella Machin, 
who gave much help with the calculations and to Dr A. 
Miller who provided the densitometer trace (2) in Fig. 
3(a). 
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